THE APPLICATION OF THERMAL ANALYSIS AND CONDUCTION CALORIMETRY ON THE FORMATION AND HYDRATION OF CALCIUM ALUMINOFERRITE

Su Muzhen, Chen Yimin, Shi Liping, Deng Jun'an and Liu Xiaoxin

CHINA BUILDING MATERIALS ACADEMY, BEIJING 100024, CHINA

DTA was used to study the formation of calcium aluminoferrite from CaO, Al₂O₃ and Fe₂O₃ (proportion = 2 : x : 1-x), x= 0-3/4) and the effects of C4A₃ \overline{S} C₁₁A₇·CaF₂, β -C₂S and MgO on that process. The fusion of CF and the eutectic of CaO-Fe₂O₃, CA-C₁₂A₇, CA-C₃A, C₁₂A₇-C₃A and CA-C₂A_xF_(1-x) will be favourable for the formation. The presence of β -C₂S and MgO will decrease its formation temperature by an extra eutectic while C₄A₃ \overline{S} and C₁₁A₇·CaF₂ will not.

The early heat evolution during the hydration of $C_2A_xF_{(1-x)}$ were measured by the conduction calorimeter made by ourselves and the products after 1 day hydration were examined by TG and DTA. The results revealed that the peak of heat evolution rise, the amount of the hydrating product iron hydrate gel decreases, CAH₁₀ and C₃(A, F)H₆ increase with the increase of the value x. The more MgO (up to 5%) soluted in C₆AF₂ is 2%, the hydration heat for the system reaches the highest.

Keywords: calcium aluminoferrite, conduction calorimetry, DTA, TG

Introduction

Calcium aluminoferrite, one of the four main minerals in Portland clinker, plays an important role in clinker formation and hydraulicity of cement. In some saving energy cements, such as high-ferrite cement [1] and aluminoferrite cement [2], its content is quite high.

It is believed that calcium aluminoferrite is a solid solution, of which the Al_2O_3/Fe_2O_3 ratio varies significantly with clinker systems and so does the hydration performance. But the results proposed by different authors are not uniform [3–5]. In this paper the thermal effect during the formation of the process with various $Al_2O_3/(Al_2O_3 + Fe_2O_3)$ are studied by differential thermal analysis (DTA), their hydration heat evolution are measured by conductive calorimetry and the hydration products are detected by

John Wiley & Sons, Limited, Chichester Akadémiai Kiadó, Budapest DTA and thermogravimetry (TG) as well as its derivative (DTG). The influence of some impurities on these processes are also discussed.

Thermal analysis of calcium aluminoferrite formation

The formation of 2CaO·Fe₂O₃

Figure 1 gives DTA curves of $2\text{CaO}\cdot\text{Fe}_2O_3(\text{C}_2\text{F})$ formation at different conditions. In curve *a* the endothermal at 1222°C is mainly caused by the eutectic point between

CaO-Fe₂O₃ which accelerates the formation of both CF and C₂F (the exothermal peak at 1225°C). XRD has proved that both of CF and C₂F appear as soon as the decomposition of CaCO₃·CF melts at 1237°C in both curves *a* and *b*, which is helpful for rapid formation of C₂F (exothermal at 1240°C). In fact, C₂F can easily be synthesized at 1250°C [6].

At the presence of 10% β -2CaO·SiO₂ (β -C₂S), the eutectic point between C₂S-CaO-Fe₂O₃-CF at 1212°C makes C₂F form directly and quickly (see a sharp exothermal peak at 1217°C in curve c). But if CF is previously synthesized, the eutectic temperature of C₂S-CF-C is 1209°C and CF melts at 1228°C which results in C₂F forming totally.

Curves *e* and *f* indicate a significant effect of 5% MgO on the process mentioned above. In the case of CF + C + 10% β -C₂S + 5% MgO, CF still melts at 1231°C which promotes C₂F formation (1239°C). The endothermal valley at 1322°C means the eutectic in system C₂F-C₂S-MgO and a new phase may form through the liquid (1335°C). But for the mixture 2CaO + Fe₂O₃ + 10% β -C₂S + 5% MgO, the endothermal effect by CF melting is no longer present, which implies that neither CF nor free Fe₂O₃ presents at about 1230°C. In fact, some free CaO and MgFe₂O₄ are detected by XRD at below 1250°C. So it can be believed that some MgO will solute in C₂F finally.

The effect of impurities on formation of C_4AF from $C_2F + CA + C$

The compounds, such as C₂F, CA, C₁₁A₇·CaF₂, C₄A₃S, and β -C₂S are previously synthesized and then 10% C₁₁A₇·CaF₂, 10% C₄A₃S, 10% β -C₂S and 10% β -C₂S + 5% MgO, are added to the mixture of C₂F + CA + C, respectively. Figure 2 gives their thermoanalytical curves by the same operation conditions with Fig. 1. In the case of C₂F + CA + C the thermal effects related to C₂F formation all disappear. The endothermal valley at 1360°C is referable to the eutectic between aluminate phases, such as CA + C₁₂A₇, C₁₂A₇-C₃A, and CA-C₃A, which accelerates the formation of C₄AF, and the other one at 1420°C is C₄AF melting point C₁₁A₇·CaF₂ and C₄A₃S have no significant influence on C₄AF formation from C₂F + CA + C but both β -C₂S and β -C₂S + MgO do have one. The addition of 10% β -C₂S leads an eutectic point at 1322°C reducing the C₄AF synthesis temperature to about 1320°C and melt point to 1402°C. The addition of 10% β -Cu2S +5% mgO makes the eutectic and melt temperature further decrease to 1291°C and 1374°C, respectively, and C₄AF can be totally synthesized at about 1290°C.

The formation of calcium aluminoferrite with different Al_2O_3 / Fe_2O_3

Figure 3, is the thermoanalytical curve of mixtures of CaO, Al₂O₃ and Fe₂O₃ with Al₂O₃ / (Al₂O₃ + Fe₂O₃) = $\frac{2}{12}$, $\frac{4}{12}$, $\frac{5}{12}$, $\frac{6}{12}$, $\frac{7}{12}$, $\frac{8}{12}$ and $\frac{9}{12}$, respectively, and with CaO / (Al₂O₃ + Fe₂O₃) = 2 for all specimen. When Al₂O₃ / (Al₂O₃ + Fe₂O₃) < $\frac{4}{12}$, the endothermal at 1230°C, which is the eutectic of CaO–Fe₂O₃ and may be some CF melting, accelerates the formation of C₁₂AF₅ and C₆AF₂ (about 1240°C). When Al₂O₃ / (Al₂O₃ + Fe₂O₃) > $\frac{5}{12}$, this valley gradually decreases, which means less free Fe₂O₃

Fig. 3 DTA curves for formation of 1) C_2F ; 2) $C_2A_{7/12}F_{10/12}$; 3) C_6AF_2 ; 4) $C_2A_{5/12}F_{7/12}$; 5) C_4AF ; 6) $C_2A_{7/12}F_{5/12}$; 7) C_6A_2F ; 8) $CA_{9/12}F_{3/12}$

J. Thermal Anal., 38, 1992

lifted up to 1230°C. When Al₂O₃ / (Al₂O₃ + Fe₂O₃)> 7/12, it sharply reduces to near disappearance but free CaO still can be detected by XRD at 1300°C. In these samples, the eutectic between aluminate phases at 1360°C brings about the complete formation of aluminoferrite with Al₂O₃ / (Al₂O₃)< 8, such as C₄AF and C₆A₂F. The endothermal effect in the range of 1250–1326°C is the eutectic of C₂A_xF_(1-x)–CA corresponding to the boundary line between the primary crystal fields of C₂A_xF_(1-x) and CA in the phase diagram of the system C₂F–CA-CaO in which the end of the line is an invariant point at 1335°C, with the increase of Al₂O₃, its temperature lifts and its area reduces. On curve 9 this extremely small effect is at 1326°C and an extra endothermal at 1390°C is the melt of C₁₂A₇ which increases with Al₂O₃ / (Al₂O₃ + Fe₂O₃). Finally the aluminoferrite melts, the temperature of which rises with the decrease of Al₂O₃ / (Al₂O₃ + Fe₂O₃).

Calorimetry and thermal analysis of calcium aluminoferrite

Heat evolution and products of the hydration of calcium aluminoferrite with various Al_2O_3 / Fe_2O_3

The heat evolution is measured with the conductive calorimeter designed and made by ourselves according to Calvete principle and equipped with the type 3066 pen re-

Fig. 4 Heat evolution curves for $C_2A_xF_{(1-x)}$ (water/solid = 0.7, $T= 25^{\circ}C$)

corder made in Japan. This instrument has the characteristics of no hysteresis. Figure 4 shows that the heat evolution of C_2F hydration (W/C = 0.7) at room temperature is rather low and with the increase of Al_2O_3 / Fe_2O_3 the rate of heat evolution increases.

Fig. 5 DTA, DTG curves for C₂A_xF_(1-x) hydrated 1 day at 25°C with water/solid ratio of 0.7. 1) C₂F; 2) C₂F_{0.1}F_{0.9}; 3) C₂A_{0.3}F_{0.7}; 4) C₂A_{0.5}F_{0.5}; 5) C₂A_{0.6}F_{0.4}; 6) C₂A_{0.7}F_{0.3}. Heating rate: 20 deg/min. Sample weight: 20 mg

Figures 5 and 6 are DTA and DTG curves of the products of the same samples as in Fig. 4 after 24 hours hydration. On the thermoanalytical curves of C₂F hydration product, the large endothermal presents C₄FH₁₃ dehydration and iron hydrate gel dewatering. The exothermal at 552°C and the endothermal at 612°C are iron hydrate gel crystallizing and dewatering, respectively. In the specimen with Al₂O₃, the dewatering temperature of C₄(A, F)H₁₃ is in the range of 170°–180°C. As the Al₂O₃ increases, the crystallization temperature of iron hydrate gel gradually lifts, i.e. at 627°C for C₂A_{0.5}F_{0.5} and at 663°C for C₂A_{0.7}F_{0.3}, which means the increase of basicity in the system, and its peak area decreases, which indicates the decrease of its amount. An endothermal at slightly above 100°C and another one at about 300°C are caused by CAH₁₀ and C₃(A, F)H₆, respectively. Both of them become more and more significant as the Al₂O₃ increases.

The DTG curves are quite identical with the DTA ones: peak of $C_4(A, F)H_{13}$ at 140°-160°C, and $C_3(A, F)H_6$ at 270°-300°C.

Fig. 6 DTA, DTG curves for C₂A_xF_(1-x) hydrated 1 day at 25°C with water/solid ratio of 0.7. 1) C₂F; 2) C₂F_{0.1}F_{0.9}; 3) C₂A_{0.3}F_{0.7}; 4) C₂A_{0.5}F_{0.5}; 5) C₂A_{0.6}F_{0.4}; 6) C₂A_{0.7}F_{0.3}. Heating rate: 20 deg/min. Sample weight: 20 mg

Fig. 7 Heat evolution curves of C₆AF₂ with TiO₂ (water/solid = 0.8, $T = 20^{\circ}$ C)

2153

J. Thermal Anal., 38, 1992

Influence of impurities soluted on the heat evolution of C₆AF₂ hydration

Figures 7 and 8 give the heat evolution curves of the hydration of C_6AF_2 with small amount of MgO and TiO₂, respectively. It is clear that the heat evolution enhances with the rise of MgO amount up to 5%. In the case of TiO₂ the highest value is reached when TiO₂ added is 2%. this difference may be caused by the different location of the impurities at C₆AF₂ lattice.

Fig. 8 Heat evolution curves of C₆AF₂ with MgO (water/solid = 0.8, $T = 20^{\circ}$ C)

Conclusion

Calorimetry and thermal analysis, such as DTA and TG/DTG, are useful and effective in the research on the formation and hydration of calcium aluminoferrite.

By DTA it can be deduced that the liquids appearing during heating are main factors accelerating the formation of calcium aluminoferrite. As $Al_2O_3/(Al_2O_3 + Fe_2O_3) < \frac{1}{3}$ the eutectic of CaO-Fe₂O₃ and/or the melt of CF below 1240°C are sufficient for total formation of calcium aluminoferrite. When $Al_2O_3 / (Al_2O_3 + Fe_2O_3)$ increases up to $\frac{2}{3}$ the eutectic between aluminates at 1360°C can make it be synthesized. The addition of β -C₂S and MgO will lower the temperature by producing an extra eutectic point.

The heat evolution of calcium aluminoferrite hydration lifts with the increase of Al₂O₃, in the phase and that of C₆AF₂ is lifted by the addition of MgO up to 5% and reaches the highest when TiO₂ added is 2%. The hydration product of calcium aluminoferrite contains C₄(A, F)H₁₃, C₃(A, F)H₆, CAH₁₀ and the iron hydrate gel.

Among them $C_3(A, F)H_6$ and CAH_{10} increase and iron hydrate gel decreases with the rise of Al_2O_3 / Fe₂O₃.

* * *

This project is supported by National Natural Science Fundation of China and by the National Science and Technology Developing Fundation in Building Materials Field.

References

- 1 K. Metha, World Cement Technology, 11 (1980) 166.
- 2 Wang Yanmou, Su Muzhen, Deng Junan and Li Dedong, Cement, 8 (1982) 3. (in Chinese)
- 3 H. F. W. Taylor, Chemistry of Cement, London 1964, p. 6, 115, 158.
- 4 I. Jawed, S. Goto and R. Kondo, Cement and Concrete Research, 6 (1976) 441.
- 5 K. J. D. Machenzie and H. Alasti, Trans. J. Brit. Ceram. Soc., (1980) 162.
- 6 Guo Yong, Research on Ferrite-phase in Aluminoferrite Cement, M. S. Thesis, 1987. (in Chinese)

Zusammenfassung — Mittels DTA wurde die Bildung von Calciumaluminoferrit aus CaO, Al₂O₃ und Fe₂O₃ im Verhältnis 2:x:1-x (mit x=0-3/4) sowie der Einfluß von C₄A₃S, C₁₁A₇CaF₂, β -C₂S und MgO auf diesen Prozeß untersucht. Die Bildung wird durch die Schmelze von CF und das Eutektikum von CaO-Fe₂O₃, CA-C₁₂A₇, CA-C₃A, C₁₂A₇-C₃A und CA-C₂A_xF_(1-x) begünstigt. Durch Gegenwart von β -C₂S und MgO wird die Bildungstemperatur durch ein zusätzliches Eutektikum herabgesetzt, während C₄A₃S und C₁₁A₇CaF₂ dies nicht bewirken.

Mit Hilfe eines von uns hergestellten Konduktions-Kalorimeters wurde die frühe Wärmeentwicklung während der Hydratation von $C_2A_xF_{(1-x)}$ gemessen und die Produkte nach einer 1tägigen Hydratation mittels TG und DTA untersucht. Die Ergebnisse zeigten, daß mit einem steigenden Wert für x die Peaks der Wärmeentwicklung größer werden, die Menge des Hydratationsproduktes Eisenhydratgel abnimmt und CAH₁₀ und C₃(A,F)H6 ebenfalls mehr werden.Je mehr MgO (bis zu 5 %) in C₆AF₂ gelöst ist, umso höher ist die Hydratationswärme für diesen Mischkristall. Wird in C₆AF₂ 2 % TiO₂ gelöst, erreicht die Hydratationswärme ihr Maximum für dieses System.